The Positive Impact of Using Optical Fibers on Cell Towers

Posted by Jonathan Tuck on Wed, Sep 2, 2015 @ 14:09 PM

While fiber optic technology has been utilized for many years in the communications industry, consumers generally identify with the role that it plays in wired communications such as Cable TV, Fiber-To-The-Home, and the related networking equipment.  However, what most overlook or do not realize is the significant impact that deploying optical fibers has also had on something consumers use every day – mobile devices.  In order to achieve the high speed data levels that we have become accustomed to when using mobile devices, cell towers and their supporting networks had to be retrofitted with optical fiber cables.

Read More

Topics: fiber cable, optical fiber, cell towers

Upgrading to 40/100 Gigabit Ethernet? Consider the Implications on your Multimode Fiber Infrastructure

Posted by OJ Johnston on Mon, May 11, 2015 @ 17:05 PM

While many enterprises are considering the move to a 40/100G ethernet infrastructure, often they overlook the impact of remaining with a multimode fiber infrastructure. While there is little difference in the infrastructure requirements of 10G ethernet for single-mode fiber and multimode fiber infrastructures, there is an exponential difference in 40/100G ethernet infrastructures. Many people tout the economics of MMF vs SMF lasers as the key reason for remaining with their MMF infrastructure; however, the savings achieved there will likely be erased by the increased cost of the passive optical infrastructure.

Read More

Topics: network monitoring, single mode optical fiber, multimode optical fiber, 100G, optical taps, network taps, 40G, gigabit ethernet

Solving Optical Multicast Challenges

Posted by Kevin Miller on Mon, Mar 17, 2014 @ 18:03 PM

There are many scenarios in today’s networks that require the replication of an optical signal, also known as optical multicast. Some of those scenarios include video feeds or data streams that need to reach multiple endpoints simultaneously. In other scenarios an expensive 40/100Gbps port may need to be replicated. In either case, current multicasting solutions create potential problems associated with congestion, cost, and latency.

Read More

Topics: optical switch, switchlight, optical multicasting, optical multicast, 100Gbps

Optical Switches: Symmetric and Asymmetric

Posted by Kevin Miller on Wed, Feb 5, 2014 @ 16:02 PM

While there are a number of aspects that can be discussed in regards to optical switching technology, the focus of this article is to provide information about two key categories of optical switches – symmetric and asymmetric.  The concept is very straightforward, but still important to understand when determining which type of optical switch will be most suitable for a given application.

Read More

Topics: network monitoring, optical switch, optical switches, optical switching, symmetric optical switches, asymmetric optical switches, non-blocking switch, switchlight

Are Your CATV Laser Transmitters Optimized for Maximum Performance?

Posted by Kevin Miller on Tue, Sep 10, 2013 @ 16:09 PM

As a provider of Optical Modulation Index (OMI) Instruments used for optimizing laser transmitter performance, our organization has the opportunity to work closely with many of the talented technicians and engineers at the leading CATV operators around the world.  As a result of the many discussions related to both the importance and use of OMI for maximizing system performance, there have been a number of consistent topics we have seen regarding the deployment of transmitters in the network.

Read More

Topics: m2 optics, optical modulation index, omi, laser transmitter, fos 1000a, catv transmitter, catv laser

Mobile Backhaul - Strategies for Increasing Bandwidth to Cell Sites

Posted by OJ Johnston on Mon, Jul 22, 2013 @ 17:07 PM

As the use of mobile applications and services that require increasingly more bandwidth continues to grow, wireless service providers must find cost-effective and efficient methods for meeting the bandwidth demand. Legacy transport networks are no longer capable of adequately serving today’s cell sites. Newer technologies such as GPON, WDM-PON, and Ethernet over CWDM/DWDM are all well-suited to cost-effectively address the growing bandwidth needs of wireless service providers. Regardless of the technology used, M2 Optics’ SplitLight product is an integral part of the solution.

Read More

Topics: WDM-PON, GPON, SplitLight, m2 optics, cwdm, dwdm, mobile backhaul, wireless backhaul, oadm

Enterprise and MDU/MTU PON – Rack’em, But Don’t Stack’em

Posted by OJ Johnston on Tue, Apr 9, 2013 @ 17:04 PM

Currently, one of the challenges in deploying new, higher speed services to both enterprise customers as well as MDU/MTU customers is how to deliver these services using the least amount of space possible, while maintaining network flexibility and service quality.  M2 Optics’ recent release of the SplitLighttm High-Density Platform (HDP) enables unprecedented space savings and enhanced flexibility without sacrificing performance.

Read More

Topics: PON, WDM-PON, GPON, 10G GPON, PON splitters, MDU PON, SplitLight

Get The Most Out Of Bare Optical Fiber Spools

Posted by Kevin Miller on Thu, Apr 4, 2013 @ 17:04 PM

If your company is like most that are involved with building or utilizing fiber optic systems, chances are you have a few spools of bare optical fiber laying around the lab.  Since it is critical to ensure fiber-based equipment works as intended prior to deployment in the field, it is a recommended and common practice for engineers to simulate networks using spools of bare optical fiber.  Because there have been a variety of different fibers available over the years, engineers can end up with fair amount of spools at their disposal.

Read More

Topics: optical fiber, optical fibers, fiber spools, optical fiber spools, bare optical fiber

Passive Optical Networks – Moving Beyond the LGX Form-Factor

Posted by OJ Johnston on Wed, Apr 3, 2013 @ 17:04 PM

Traditionally, products have gone down the path of modularity for two reasons: cost and/or ease of replacement without effecting existing services.  When the LGX form factor was first created for optical splitters, it made sense to have a modular approach for the first reason and to a lesser extent, the latter reason.  When optical splitter modules were first put into the LGX form factor, the cost per splitter was considerably higher than it is today. Therefore, inserting modules into a chassis became a cost effective way to “grow” as needed.  At the same time, the quality of those modules was not as high nor as repeatable as it is today, so despite any changes being service effecting (passive elements are not capable of protection switching around an outage) having the ability to replace the modules was also a key advantage.

Read More

Topics: SplitLight, fiber optic splitters, m2 optics, optical tap, fiber tap, optical splitters, passive optical network, lgx, pon splitter

Best Practices for Network Monitoring Traffic Capture

Posted by OJ Johnston on Thu, Dec 20, 2012 @ 18:12 PM

In recent years, companies have shown the benefits of “copying” and sending traffic from network backbones to purpose-built monitoring devices…no interference with the existing, “live” traffic and the traffic can be analyzed in real-time or stored for later playback. However, the best approaches to “copying” and sending the traffic to be monitored has been a source of contention.  As 40/100G becomes more prevalent, how the traffic is accessed will become increasingly important.

Initially, the Switched Port Analyzer (SPAN) ports were used to deliver copies of traffic to analyzers, but this has posed several problems at the 1G and 10G data rates, which likely will increase exponentially with 40/100G:

  • SPAN ports are part of the switch/router and operate in much the same way as typical ports, so the data is not always an exact copy
  • Traffic congestion both on the router and on the SPAN port itself can result in increased latency or the traffic to be dropped completely
  • Relying on a device that could be creating the problem to help identify it can be a self-defeating exercise
Read More

Topics: network monitoring, 100G, network tap, traffic capture, analyzer port, passive optical taps, layer 1 switch, ethernet tap, network traffic analyzer