<img alt="" src="http://www.oita4bali.com/151621.png" style="display:none;">

Best Practices for Network Monitoring Traffic Capture

Posted by OJ Johnston on Thu, Dec 20, 2012 @ 18:12 PM

In recent years, companies have shown the benefits of “copying” and sending traffic from network backbones to purpose-built monitoring devices…no interference with the existing, “live” traffic and the traffic can be analyzed in real-time or stored for later playback. However, the best approaches to “copying” and sending the traffic to be monitored has been a source of contention.  As 40/100G becomes more prevalent, how the traffic is accessed will become increasingly important.

Initially, the Switched Port Analyzer (SPAN) ports were used to deliver copies of traffic to analyzers, but this has posed several problems at the 1G and 10G data rates, which likely will increase exponentially with 40/100G:

  • SPAN ports are part of the switch/router and operate in much the same way as typical ports, so the data is not always an exact copy
     
  • Traffic congestion both on the router and on the SPAN port itself can result in increased latency or the traffic to be dropped completely
     
  • Relying on a device that could be creating the problem to help identify it can be a self-defeating exercise
     
Read More

Topics: 100G, network monitoring, network tap, traffic capture, analyzer port, passive optical taps, layer 1 switch, ethernet tap, network traffic analyzer

Reducing Rack Space with New, High-Density Optical Taps

Posted by OJ Johnston on Mon, Oct 15, 2012 @ 17:10 PM

As virtualization and cloud applications become more and more prevalent in Data Centers, POPs, Head-ends, and Central Offices, the available rack space needed to house the equipment for these applications is shrinking.  While the space needed to store, process, route, or switch the data becomes more compact, one thing that remains difficult to reduce is the physical layer infrastructure. As traffic enters or exits a facility, most providers want the capability to monitor what is being delivered or sent to/from their site. At the larger sites, this data traffic is riding on fiber, and in many cases, there are a number of fibers coming into or out of a given site. To be able to accurately monitor this traffic, a passive optical tap is used to duplicate the traffic and send it to a monitoring device that can analyze the header information native to the traffic type.  In the past, these optical taps were relatively expensive and bulky. Even today, most vendors cannot provide more than 24 taps in a single 1RU footprint. 

Read More

Topics: optical fiber, m2 optics, optical tap, optical taps, fiber tap, network tap, SplitLight, optical splitter, high density