<img alt="" src="http://www.oita4bali.com/151621.png" style="display:none;">

Sources of Latency in a Financial Communications Network

Posted by John Kornegay on Tue, Aug 14, 2018 @ 10:08 AM

 

The world’s financial communication networks are a paradigm of the modern world, and they operate at very high speeds through necessity, often using fiber optic technology. So fine are the lines between success and failure in today’s trading environment that just tiny fractions of seconds do matter. When financial institutions trade via these networks, shaving microseconds off network latency can result in a significant competitive advantage and millions of dollars annually. To reduce latency, one must understand the factors that can cause latency.

Read More

Topics: Financial Networks, Network Optimization, fiber latency

Buying Optical Fiber for Network Testing and Latency Applications

Posted by Kevin Miller on Fri, Mar 31, 2017 @ 15:03 PM

When the time comes to buy spools of optical fiber for testing and demonstrating communications systems, there are a few items to consider that will help ensure you end up with an ideal setup.  Since it has been proven that following a few best practices will help you get the most out of your fiber, thinking about these four important items in advance will allow you to further qualify your needs as well as speed up the purchasing process.

Read More

Topics: fiber network simulation, fiber latency, optical time delay, network simulation, optical fiber, fiber spools, buy optical fiber

What Does Your Optical Fiber Test & Demonstration Setup Say About You?

Posted by Kevin Miller on Thu, May 12, 2016 @ 09:05 AM

Often not considered, it is important to remember that looks really do matter!

Read More

Topics: optical fiber, fiber spools, fiber latency, fiber network simulation, fiber test, buy optical fiber

Calculating Optical Fiber Latency

Posted by Kevin Miller on Mon, Jan 9, 2012 @ 15:01 PM

Latency is a term that is used to describe a time delay in a transmission medium such as a vacuum, air, or a fiber optic waveguide.  In free space, light travels at 299,792,458 meters per second.  This equates to 299.792 meters per microsecond (µs) or 3.34µs per kilometer.  In fiber optics, the latency of the fiber is the time it takes for light to travel a specified distance through the glass core of the fiber.  Light moving through the fiber optic core will travel slower than light through a vacuum because of the differences of the refractive index of light in free space and in the glass.

Read More

Topics: optical fiber, time delay, fiber latency, fiber optic latency, refractive index, calculate latency, fiber optic delay